linear constant meaning in English
线性常数
Examples
- The determination of trellis complexity of linear constant weight codes
线性等重码格子复杂度的确定 - In this paper , we will more deeply research on the base of the works , the first part , we give the summarize for the condition and the significance . the second part , we give the preparation knowledge to the whole paper ; the third part , we research the lower and upper bound of the generalized hamming weights for the linear codes ; include d ( r , n , k ) bound , the finite sum representation of the lower and upper bound function of generalized hamming weights for linear codes , generalized griesmer bounds ; the 4 - th part , research the definition , the property of the r - th generalized weights for the non - linear codes and non - linear constant codes , and give the expression of the generalized weight of binary ( n , m , d ) non - linear codes ; the 5 - th part , research the weight hierarchy of linear codes and non - linear codes , for example , necessary condition and sufficient condition , the 6 - th part , we research the expression of the r - th generalized hamming weights of reseaval classes codes
本文在已有的基础之上作了进一步的探讨,第一章综述了广义hamming重量的现状和意义;第二章给出了全文的预备知识;第三章研究了线性码的广义hamming重量的一些上下界;包括d ( r , n , k )界,上下限函数有限和表达式,广义griesmer界;第四章讨论了非线性码及非线性等重码的广义hamming重量的定义、性质,给出了2元( n , m , d )非线性码的第r广义hamming重量的表达式;第五章研究了线性码、非线性码的重量谱系;第六章给出了几类码的广义hamming重量的表达式,这些码包括直和码( directsumcodes ) 、笛卡尔积码( cartesianproductcodes ) 、张量积码( tensorproductcodes ) 、延长hamming码。 - In chapter 2 , the ii ordering is presented and the arbitrary functions and the arbitrary constants are least in the solution of formal series under the ii ordering by illustration ; furthermore , the author introduces the application of the standard form of reid to ascertain the target equation of linear constant partial equations
在第二章中,作者给出了reid标准型算法中的型序关系,通过举例说明在型序下,得到的形式幂级数解中任意函数和任意常数的个数最少;并提出了reid标准型的一个重要应用:确定线性常系数偏微分方程组的目标方程。